EDDA: An Efficient Distributed Data Replication Algorithm in VANETs

نویسندگان

  • Junyu Zhu
  • Chuanhe Huang
  • Xiying Fan
  • Sipei Guo
  • Bin Fu
چکیده

Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Replication based on Firefly Algorithm in Data Grid

In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version to access information. The most important point is to know in which sites and distributed sy...

متن کامل

E2DR: Energy Efficient Data Replication in Data Grid

Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domai...

متن کامل

A New Routing Algorithm for Vehicular Ad-hoc Networks based on Glowworm Swarm Optimization Algorithm

Vehicular ad hoc networks (VANETs) are a particular type of Mobile ad hoc networks (MANET) in which the vehicles are considered as nodes. Due to rapid topology changing and frequent disconnection makes it difficult to design an efficient routing protocol for routing data among vehicles. In this paper, a new routing protocol based on glowworm swarm optimization algorithm is provided. Using the g...

متن کامل

An Efficient Data Replication Strategy in Large-Scale Data Grid Environments Based on Availability and Popularity

The data grid technology, which uses the scale of the Internet to solve storage limitation for the huge amount of data, has become one of the hot research topics. Recently, data replication strategies have been widely employed in distributed environment to copy frequently accessed data in suitable sites. The primary purposes are shortening distance of file transmission and achieving files from ...

متن کامل

Improving Data Availability Using Combined Replication Strategy in Cloud Environment

As grow as the data-intensive applications in cloud computing day after day, data popularity in this environment becomes critical and important. Hence to improve data availability and efficient accesses to popular data, replication algorithms are now widely used in distributed systems. However, most of them only replicate the static number of replicas on some requested chosen sites and it is ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018